Effect of Ca on cardiac mitochondrial energy production is modulated by Na and H dynamics

نویسندگان

  • My-Hanh T. Nguyen
  • S. J. Dudycha
  • M. Saleet Jafri
چکیده

Nguyen M-HT, Dudycha SJ, Jafri MS. Effect of Ca on cardiac mitochondrial energy production is modulated by Na and H dynamics. Am J Physiol Cell Physiol 292: C2004–C2020, 2007. First published March 7, 2007; doi:10.1152/ajpcell.00271.2006.—The energy production of mitochondria in heart increases during exercise. Several works have suggested that calcium acts at multiple control points to activate net ATP production in what is termed “parallel activation”. To study this, a computational model of mitochondrial energy metabolism in the heart has been developed that integrates the Dudycha-Jafri model for the tricarboxylic acid cycle with the Magnus-Keizer model for mitochondrial energy metabolism and calcium dynamics. The model improves upon the previous formulation by including an updated formulation for calcium dynamics, and new descriptions of sodium, hydrogen, phosphate, and ATP balance. To this end, it incorporates new formulations for the calcium uniporter, sodium-calcium exchange, sodium-hydrogen exchange, the F1F0ATPase, and potassium-hydrogen exchange. The model simulates a wide range of experimental data, including steady-state and simulated pacing protocols. The model suggests that calcium is a potent activator of net ATP production and that as pacing increases energy production due to calcium goes up almost linearly. Furthermore, it suggests that during an extramitochondrial calcium transient, calcium entry and extrusion cause a transient depolarization that serve to increase NADH production by the tricarboxylic acid cycle and NADH consumption by the respiration driven proton pumps. The model suggests that activation of the F1F0-ATPase by calcium is essential to increase ATP production. In mitochondria very close to the release sites, the depolarization is more severe causing a temporary loss of ATP production. However, due to the short duration of the depolarization the net ATP production is also increased.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes.

BACKGROUND Oxidative stress is causally linked to the progression of heart failure, and mitochondria are critical sources of reactive oxygen species in failing myocardium. We previously observed that in heart failure, elevated cytosolic Na(+) ([Na(+)](i)) reduces mitochondrial Ca(2+) ([Ca(2+)](m)) by accelerating Ca(2+) efflux via the mitochondrial Na(+)/Ca(2+) exchanger. Because the regenerati...

متن کامل

Protective Effect of Aerobic Training along with Resveratrol on Mitochondrial Dynamics of Cardiac Myocytes in Animal Model of Non-alcoholic Fatty Liver Disease

  Background & objectives: Non-alcoholic fatty liver disease (NAFLD) is associated with mitochondrial dysfunction. The aim of the present study was to examine the effect of aerobic training along with resveratrol on cardiac expression of OPA1 and DRP1 in NAFLD male rats. Methods: In this experimental study, forty eight male Wistar rats were classified into two groups: NAFLD (n=40) and Control-N...

متن کامل

Evaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics

Mitochondria play an important role in energy production for the cell. The proper function of a myocardial cell largely depends on the functional capacity of the mitochondria.  Therefore it is necessary to establish a novel and reliable method for a non-invasive assessment of mitochondrial function and metabolism in humans. Although originally designed for evaluating myocardial perfusion, 99mTc...

متن کامل

Mitochondrial buffering of calcium in the heart: potential mechanism for linking cyclic energetic cost with energy supply?

The kinetics of mitochondrial Ca 2 cycling and its precise role in controlling local Ca fluxes in intact cardiac myocytes has not been fully elucidated. In the case of cardiac excitation–contraction (E-C) coupling in normal cardiac atrial cells, it has been established that cytosolic Ca ([Ca ]c) increases peripherally within the cell and propagates to the center.1 What is less clear has been th...

متن کامل

Effect of Ca2+ on cardiac mitochondrial energy production is modulated by Na+ and H+ dynamics.

The energy production of mitochondria in heart increases during exercise. Several works have suggested that calcium acts at multiple control points to activate net ATP production in what is termed "parallel activation". To study this, a computational model of mitochondrial energy metabolism in the heart has been developed that integrates the Dudycha-Jafri model for the tricarboxylic acid cycle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007